Workshop on Suborbital Platforms and Nanosatellites Canadian Space Agency

WATER: AEROSOLS AND TEMPERATURE EXPERIMENT ON HIGH ALTITUDE BALLOON

Marianna G. Shepherd
Centre for Research in Earth and Space Science
York University

April 15, 2010
Discussions - Balloon Platforms

Vlission Objectives

- Study the region of the upper troposphere/lower stratosphere in relation to its role in the coupling of the troposphere/stratosphere/mesosphere and the effect of key atmospheric parameters as water, temperature and aerosol on the radiative budget of the region as indicators of climate change in the middle atmosphere.

Scientific Objectives

- Accurate, simultaneous and collocated high-resolution measurements of $\mathrm{H}_{2} \mathrm{O}$, temperature and aerosol scattering at 10 -40 km height and at wavelengths of $355 \mathrm{~nm}, 532 \mathrm{~nm}, 1064 \mathrm{~nm}$ aricl 1500 sirs for the aerosols and 1360 nm for water.
- Examine the input of $\mathrm{H}_{2} \mathrm{O}$ into the stratosphere
- Observe and study thin aerosol layers, polarization properties, spatial and temporal variability.
- Study the dynamics of the UTLS and the troposphere/stratosphere coupling through gravity wave perturbations in the temperature field
- Provide information on the aerosol interference for the retrieval of $\mathrm{H}_{2} \mathrm{O}$ and temperature from the SHOW and GPS measurements, respectively.

Science Requirements

- High latitudes $\left(>50^{\circ} \mathrm{N}\right)$, summer daylight conditions
- Altitude range $10-40 \mathrm{~km}$
- Measurements of
- Volume scattering rate of sunlight
- Absorption
- Radio-occultation
- Vertical resolution - better than 0.5 km
- Horizontal resolution $-<20 \mathrm{~km}$
- $\mathrm{H}_{2} \mathrm{O}$ - rms error (by mass) $0.5 \mathrm{E} 3 \mathrm{~g} / \mathrm{kg}$ or better
- T-rms 0.5 K or better
- Aerosol optical path (integrated over vertical profile range) rms < 0.004, bias error < 0.006
- Aerosol extinction coefficient - precision of 1.E-4
- Size distribution - $<30 \%$ rms precision

SHOW (Spectral Heterodyne Observations of Water)

- SHS (Spatial Heterodyne Spectrometer)
- Observations of water vapour absorption in the near IR, at $1.36 \mu \mathrm{~m}$
- InGaAs detector, wavelength 0.9-1.7 $\mu \mathrm{m}$
- Focal plane array -320×256 pixels
- No moving parts

Design Parameters

SHOW Prototype Model

- Design wavelength:
- Lines per mm of Gratings:
- Grating width and height:
- Littrow angle:
- Prism APEX angles:
- Field of View (H.A.):
- Beam-splitter window:
- Beam-splitter angle:
- Arm length:
- Bandwidth (minimum):
- Spectral Resolution:
1364.5 nm

700
$50 \times 50 \mathrm{~mm}$
28.5° @ Order: 1
12°
4° (Half Angle)
$70 \times 90 \mathrm{~mm}$
-45°
150 mm
$1363.5 \mathrm{~nm}-1366.2 \mathrm{~nm}$
0.017 nm

GPS RO - Instrument List

Baseline GPS Occultation Receiver

- Baseline GPS RO package - Pyxis receiver (BroadReach Engineering) < 2.0 $\mathrm{kg}, 12$ to $18 \mathrm{~W}, 12 \times 8 \times 20 \mathrm{~cm}$
- GPS Reflectometry and Scatterometry
- 2-4 GPS \& RO antennas
- Coaxial cabling to interface the antennas \& the receiver
- Serial cabling to interface receiver \& other platform systems
- Analog to digital converter
- GPS code and carrier wave tracking loops \& ≥ 48 tracking channels
- Must be able to withstand the balloon environment at $\sim 35 \mathrm{~km}$ height
- Weight - $\sim 5 \mathrm{~kg}$
- Max power usage - at $\sim 35 \mathrm{~W}$

LIIVIA (Limb Imaging of Aerosols)

- Four-channel imager - solar scattered radiances at $355 \mathrm{~nm}, 532$ nm, 1064 nm , and 1500 nm .
- Preferred look limb direction $\leq 60^{\circ}$ of azimuth away from the sun
- Correlative observations with SHOW

Preliminary layout

Deployable Aperture Door

Instrument Radiator

LIVIA Technical Description

- CCD detector (512×512 pixels) for $355 \mathrm{~nm} \& 532 \mathrm{~nm}$
- InGaAs detector (320×256 pixels) for NIR (1064 nm \& 1500 nm)
- Images divided in two
- CCD image vertical binning to match InGaAs : 256×512 pixels (width \times height) vs 160×256 pixels
- High vertical resolution, $\sim 120 \mathrm{~m} \rightarrow$ imaging thin layers and other irregularities within the 30 km height range ($10-40 \mathrm{~km}$ height)
- Channels 355 \& 532 nm - exposure time 1 sec , filter width of 10 nm
- Channels 1064 \& 1500 nm - horizontally binned into 5×1 pixels, 5 sec exposure time, filter width of 30 nm and 100 nm , respectively.

Payload - High-altitude Balloon

- Standard gondola by CRESS SIL, using existing telemetry and ground link
- Full payload mass, including the gondola - 30 $\mathrm{kg} \rightarrow$ advantages for launch and recovery \rightarrow multiple flights in a given mission
- Ideal for observations of UTLS region
- State of art instruments but still under development \rightarrow test what science could be conducted for a spacecraft mission

LIVIA Prototype on BIRD Payload

- The BIRD (Balloon borne Investigations of Regional atmospheric Dynamics) experiment (335 kg payload) of Physics Research Laboratory (Ahmadabad) \& Boston University - launched on March 8, 2010 at National Balloon Facility, Hyderabad, India
- A nano - payload weighing 6.5 kg - CRESS, York University measurement of aerosol constituents at sunset.
- Launched on a $109,755 \mathrm{~m}^{3}, 25 \mu \mathrm{~m}$ Antrix single shell balloon at 10:52 hrs - the first time in the past 40 years when a balloon was launched around noon.
- The balloon reached a float altitude of 34.8 km . at $12: 45 \mathrm{hrs}$. and was allowed to float till 18:25 hrs.
- After about $51 / 2$ hours of float, the flight was terminated by telecommand at 18:25 hrs.
- The recovery was performed 380 km west of Hyderabad.

LIVIA Prototype - Single Channel Configuration

National Balloon Facility - Hyderabad - March 8, 2010

Acknowledgements

- Brian Solheim
- Stephen Brown
- Gordon Shepherd
- George Fazekas
- Christopher Sioris

