Workshop on Suborbital Platforms and Nanosatellites Canadian Space Agency

WATER, AEROSOLS AND TEMPERATURE EXPERIMENT ON HIGH ALTITUDE BALLOON

Marianna G. Shepherd Centre for Research in Earth and Space Science York University

> April 15, 2010 Discussions - Balloon Platforms

Mission Objectives

Study the region of the **upper** troposphere/lower stratosphere in relation to its role in the coupling of the troposphere/stratosphere/mesosphere and the effect of key atmospheric parameters as water, temperature and aerosol on the radiative budget of the region as indicators of climate change in the middle atmosphere.

Scientific Objectives

- Accurate, simultaneous and collocated high-resolution measurements of *H*₂*O*, *temperature* and aerosol scattering at 10 - 40 km height and at wavelengths of 355 nm, 532 nm, 1064 nm and 1500 nm for the aerosols and **1360 nm** for water.
- Examine the input of H₂O into the stratosphere
- Observe and study thin aerosol layers, polarization properties, spatial and temporal variability.
- Study the dynamics of the UTLS and the troposphere/stratosphere coupling through gravity wave perturbations in the temperature field
- Provide information on the aerosol interference for the retrieval of H₂O and temperature from the SHOW and GPS measurements, respectively.

Science Requirements

- High latitudes (>50°N), summer daylight conditions
 - Altitude range 10 40 km
- Measurements of
 - Volume scattering rate of sunlight
 - Absorption
 - Radio-occultation
- Vertical resolution better than 0.5 km
 - Horizontal resolution < 20 km
- $H_2O rms error (by mass) 0.5E3 g/kg or better$
- T rms 0.5 K or better
- Aerosol optical path (integrated over vertical profile range) rms < 0.004, bias error < 0.006</p>
- Aerosol extinction coefficient precision of 1.E-4
- Size distribution <30% rms precision

SHOW (Spectral Heterodyne Observations of Water)

- SHS (Spatial Heterodyne Spectrometer)
- Observations of water vapour absorption in the near IR, at 1.36 μm
- InGaAs detector, wavelength 0.9-1.7 μm
- Focal plane array 320 x 256 pixels
- No moving parts

SHOW Prototype Model

Design Parameters

- Design wavelength:
- Lines per mm of Gratings:
- Grating width and height:
- Littrow angle:
- Prism APEX angles:
- Field of View (H.A.):
- Beam-splitter window:
- Beam-splitter angle:
- Arm length:
- Bandwidth (minimum):
- Spectral Resolution:

1364.5 nm 700 50 x 50 mm 28.5°@ Order: 1 12° 4° (Half Angle) 70 x 90 mm -45° 150 mm 1363.5 nm - 1366.2 nm 0.017 nm

GPS RO – Instrument List

Baseline GPS Occultation Receiver

- Baseline GPS RO package Pyxis receiver (BroadReach Engineering) < 2.0 kg, 12 to 18W, 12 x 8 x 20 cm
- GPS Reflectometry and Scatterometry
- 2-4 GPS & RO antennas
- Coaxial cabling to interface the antennas & the receiver
- Serial cabling to interface receiver & other platform systems
- Analog to digital converter
- GPS code and carrier wave tracking loops & ≥48 tracking channels
- Must be able to withstand the balloon environment at ~ 35 km height
- Weight ~ 5 kg
- Max power usage at ~ 35 W

LIMA (Limb Imaging of Aerosols)

- Four-channel imager solar scattered radiances at 355 nm, 532 nm, 1064 nm, and 1500 nm.
- Preferred look limb direction $\leq 60^{\circ}$ of azimuth away from the sun
- Correlative observations with SHOW

Preliminary layout

Deployable Aperture Door Instrument Apertures Instrument Radiator

LIMA Technical Description

- CCD detector (512 x 512 pixels) for 355 nm & 532 nm
- InGaAs detector (320 x 256 pixels) for NIR (1064 nm & 1500 nm)
- Images divided in two
- CCD image vertical binning to match InGaAs : 256 x 512 pixels (width x height) vs 160 x 256 pixels
- High vertical resolution, ~120 m \rightarrow imaging thin layers and other irregularities within the 30 km height range (10 40 km height)
- Channels 355 & 532 nm exposure time 1 sec, filter width of 10 nm
- Channels 1064 & 1500 nm horizontally binned into 5x1 pixels, 5 sec exposure time, filter width of 30 nm and 100 nm, respectively.

Payload – High-altitude Balloon

- Standard gondola by CRESS SIL, using existing telemetry and ground link
- Full payload mass, including the gondola 30 kg → advantages for launch and recovery → multiple flights in a given mission
- Ideal for observations of UTLS region
- State of art instruments but still under development → test what science could be conducted for a spacecraft mission

LIMA Prototype on BIRD Payload

- The BIRD (Balloon borne Investigations of Regional atmospheric Dynamics) experiment (335 kg payload) of Physics Research Laboratory (Ahmadabad) & Boston University - launched on March 8, 2010 at National Balloon Facility, Hyderabad, India
- A nano payload weighing 6.5 kg CRESS, York University measurement of aerosol constituents at sunset.
- Launched on a 109,755 m³, 25 µm Antrix single shell balloon at 10:52 hrs - the first time in the past 40 years when a balloon was launched around noon.
- The balloon reached a float altitude of 34.8 km. at 12:45 hrs. and was allowed to float till 18:25 hrs.
- After about 5 1/2 hours of float, the flight was terminated by telecommand at 18:25 hrs.
- The recovery was performed 380 km west of Hyderabad.

LIMA Prototype – Single Channel Configuration

National Balloon Facility – Hyderabad – March 8, 2010

Acknowledgements

- Brian Solheim
- Stephen Brown
- Gordon Shepherd
- George Fazekas
- Christopher Sioris